13,089 research outputs found

    Thermal field theories and shifted boundary conditions

    Full text link
    The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedure.Comment: 7 pages, 1 figure, talk presented at the 31st International Symposium on Lattice Field Theory - Lattice 2013, Mainz, German

    Young massive stars in the ISOGAL survey I. VLA observations of the ISOGAL l=+45 field

    Get PDF
    We present VLA radio continuum observations at 3.6 and 6 cm of a ~0.65 sq.deg. field in the galactic plane at l=+45deg . These observations are meant to be used in a comparison with ISO observations at 7 and 15 um of the same region. In this paper we compare the radio results with other radio surveys and with the IRAS-PSC. At 3.6 and/or 6 cm we detect a total of 34 discrete sources, 13 of which are found in five separate extended complexes. These are all multiple or single extended thermal ultra-compact HII (UCHII) regions. While for each of these complexes an IRAS counterpart could be reliably found, no IRAS counterpart could be reliably identified for any of the remaining 21 sources. Of these 21 compact sources, six are candidate UCHII regions, and the other 15 are most probably background extragalactic non-thermal sources. The five IRAS sources associated with the radio continuum complexes all satisfy the Wood & Churchwell (1989; WC89) color criteria for UCHII. None of the other 38 IRAS point sources present in our surveyed field show the same colors. This fraction of WC89 type to total IRAS sources is consistent with what is found over the entire galactic plane. The fact that, when observed with a compact VLA configuration, the IRAS sources with "UCHII colors" are found to be associated with arcminute-scale extended sources, rather than with compact or unresolved radio sources, may have important implications on the estimated lifetime of UCHII regions.Comment: 15 pages, 22 eps figures, A&A Supp. in press, higher resolution figures available at http://www.arcetri.astro.it/~lt/preprints/preprints.htm

    Comparative Enumeration Gene Expression

    Get PDF
    This paper is about differential gene expression measured by transcript counting methods such as SAGE or MPSS. It introduces two significance tests for detection of differential expressed tags: frequentist and Bayesian. Under the frequentist view, it is proposed a test that computes the critical level as a function of each tag total frequency. Under the Bayesian view the Full Bayesian Significance Test is used considering the logistic normal distribution. The two proposed significance levels, the frequentist and the Bayesian, are compared for a data set with four libraries. The linking function between them is a Beta distribution function with mean 0.39 and standard deviation 0.30

    Properties of Reactive Oxygen Species by Quantum Monte Carlo

    Get PDF
    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3−N4N^3-N^4, where NN is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles
    • …
    corecore